SKIPPER GDS101

Graphic Depth Sounder
 Operation And Installation Manual

Edition : 20060221sw5.04.13

Weitergabe sowie Vervielfältigung dieser Unterlage, Verwertung und Mitteilung ihres Inhaltes nicht gestattet, soweit nicht ausdrücklich zugestanden. Zuwiderhandlungen verpflichten zu Schadenersatz.

Toute communication ou reproduction de ce document, toute
Exploitation ou communication de ou son contenu sont interdites, sauf Autorisation expresse. Tout manquement à cette règle est illicite et Expose son auteur au versement de dommeges et intèrèts.

Copying of this document, and giving it to others and the use or Communication of contents therof, are forbidden without express Authority. Offenders are liable to the payment of damages.

Sin nuestra expresa autorización, queda terminantemente prohibida la Reproducción total o parcial de este documento, asì como su uso Indebido y/o su exhibición o comunicación a terceros. De los infractores Se exigirá el correspondiente resarcimiento de daños y perjuicios.

1. INTRODUCTION 5
System Summary 5
Transducers. 5
Operator Panel 5
Data Entry 5
Recorded Data Storage 5
Fig. 1.1 Main Display Unit Panel Layout 6
Fig. 1.2 System Diagram7
Interfacing. 8
Outputs 8
Inputs 8
Alarms. 8
History Memory 8
Options. 8
Repeaters. 8
Remote Sounding Control 8
Auto Range 8
Sound Speed Calibration 8
GDS101 PRIMARY FUNCTIONS 9
2. OPERATION 10
Parameter entry 10
Example of parameter entry 11
Operation Screens 11
Primary operation Screens. 12
Secondary operation screens. 15
Principal Functions 22
Bottom detection 22
Ping to Ping filtering 22
Bottom Search Range 22
Power ON/OFF 22
Fixed Key Functions. 23
Depth Range 23
Picture Speed 23
Menu 23
Day / Night \& Back light adjustment 23
Soft Key Functions. 24
Gain 24
TVG 24
Digital indication 24
Frequency 24
Output Power 24
Draught 24
External Printer Operation 24
Alarm settings. 25
Clock and Calendar Settings 25
History Memory 25
Simulator. 26
Status Screen 26
Oscilloscope Screen 26
Non-volatile Parameter Memory 26
Options 27
Repeaters/Slaves 27
Remote Sounding Control. 27
Auto Range 27
Sound speed calibration 27
External Printer 27
3. USER MAINTENANCE 28
Transducer Maintenance 28
Operator Unit Maintenance. 28
Typical Status Screen (9) Contents. 30
Typical Oscilloscope Screen (10) Contents. 32
4. INSTALLATION 35
Standard System Supply 35
Transducer Installation. 35
Location 35
Installation Details. 35
Transducer Junction Box 37
Operator Unit Installation 38
Back-up Battery Jumper 41
Power Indication and function LEDs. 42
Interfacing. 44
Alarm relay 44
External alarm reset function 44
Log Pulse input 45
Remote Transducer Selector FEEDB (Feedback) 45
Transmitter and Bottom Pulse outputs 45
Analogue interfaces 45
NMEA interface 46
External Interface Ports 48
Options. 49
Repeaters/Slaves 49
Remote Keyboard 49
Remote Sounding Control. 49
5. START-UP AND SYSTEM ADAPTATION 50
System Adaptation 50
Analogue Output And Log Pulse Input Range Selection. 50
Language and Units of Measure 50
Remote Transducer Selector 50
Low frequency indication 50
NMEA Setup 51
Options 52
Calibration, Sound Speed 52
External Ping Control. 52
6. SPECIFICATIONS DIMENSIONS 53
Functional Properties 53
7. SERVICE 55
CPU Board Setup Procedure 55
MASTER RESET PROCEDURE 58
8. APPENDIX MISCELLANEOUS INSTALLATION DRAWINGS 59

1. INTRODUCTION

System Summary.
GDS101 is a navigation sounder with a large, high resolution graphic LCD. The echosounder graphics are continuously shown on the LCD along with complete navigational details.
The Color Bar :

Weak Signal	Light Purple
Green	
Day Vision	Light Green Red Dark Red Black
StrongSignal	

Weak Signal	Aqua Green Yellow Purple Red Bight Vision BtrongSignal

It is possible to connect an external printer to the operator unit. The sounder contains a 24 hour history memory. That can be printed out. Depth, time and all available navigation data are stored continuously so that the last 24 hours of information is always available.
All this information may also be printed on the external printer. All IMO requirements are met or exceeded.
Comprehensive interfaces are available including NMEA0183 inputs and outputs.

Transducers.

GDS101 is prepared for connection of the following transducers: 38,50 and 200 kHz . One or more of the transducers may be connected at the same time, and the desired transducer may be selected from the operator panel.
Operator Panel.
The operator unit contains a graphic dot-matrix supertwist LCD display and a keyboard with fixed keys, softkeys and a rotating encoder. The function of each soft-key button depends on the active screen, and the buttons are labelled on the lower rim of the LCD. The display is backlit, and contrast and backlight intensity may be adjusted by the user. The echo-gram is normally displayed continuously on the LCD and stored in the 24 hour history memory. An optional external printer is used if hard-copy documentation is required. The operator unit is normally flush mounted. Power supply options are $115 / 230 \mathrm{~V}$ AC or 24 V DC. The power consumption is appx. 70 Watts at $115 / 230 \mathrm{~V}$ AC or 50 Watts at 24 V DC.

Data Entry.

Several screens may be selected to enter various settings and calibration parameters. Each screen has a selection of soft-key buttons.
Screens 1 through 3 are primary operation screens with appropriate operator controls. Screens 4 through 10 are calibration set-up and system supervision screens.
The various screens will be described in detail later.

Recorded Data Storage.

The displayed echogram and other navigational data is continuously stored in the 24 hour history memory.
A standard printer type Hewlett Packard may be connected for paper copy, Ask Skipper Electronics for specification.
Since the printer is only required when hard copy documentation is absolutely necessary, the paper consumption is expected to be limited under normal conditions.

WARNING! False bottom echoes may occur when :
a: The bottom is out of range.
b: Extreme noise conditions are present.
c: Bottom signal may be lost for other reasons, like wakes, or aeration below transducer.
The bottom line shown on the GDS 101 screen is a synthetic signal, made by the sounder`s computer.

Fig. 1.1 Main Display Unit Panel Layout

Fig. 1.2 System Diagram

Interfacing.

The GDS101 has various interface possibilities.

Outputs.

Transmitter and Bottom Pulse Outputs.
Analogue Output 0-10 V or 4-20 mA.
NMEA0183 Interface Outputs of Depth Information.
External Alarm Relay Output.
External Printer.

Inputs
Log Input 100/200 Pulses per nautical Mile.
NMEA0183 Interface Input of Position, Heading, Speed, UTC.
Remote Control and Synchronisation of Transmitter.(Option)
Remote Transducer Switch

Alarms.

Shallow and deep alarms may be selected from Screen 1. A potential free relay contact is provided in GDS101 for interface to external alarm systems.

History Memory

GDS101 has a 24 hour history memory. Depth, time and all available navigation data are stored continuously so that the last 24 hours of information is always available, and may be printed if an external printer is connected.

Options.

Repeaters.

Graphic CRT or LCD display or digital depth slave repeaters may be connected to the system. Along with the graphic display repeaters there may also be installed remote keyboards.

Remote Sounding Control.

This option lets the GDS101 being controlled remotely in synchronised, burst or single ping modes.

Auto Range

This option will automatically adjust the depth range to maintain the bottom contour within the middle half of the screen.

Sound Speed Calibration

This option will enable adjustment of the sound speed value used for the depth calculations.

GDS101 PRIMARY FUNCTIONS

2. OPERATION

When the installation is complete, and power is connected to the Operator Unit, the system is switch one-off by power switch inside cabinet.

Parameter entry

The fixed function buttons and the soft key buttons of the various screens along with the rotating encoder, facilitates entry of parameters, setpoints and other data. The following flow chart illustrates the procedure for changing settings and entering data. The various screens are shown in detail in the Operation Section.

Fig. 2.1 Setting and Parameter Entry Flowchart

Example of parameter entry.

Let us say you want to enter a value of $\mathbf{8 0 0} \mathbf{m}$ for the depth range.
Press the Depth Range button several times and observe the depth range sequencing through the standard values $10,50,100,500,1000 \mathrm{~m}$. Press till the range is 500 m . Then press the Range button again and keep it pressed while you turn the encoder clockwise. Observe the depth range increase to 800 m , let go of the encoder and release the depth range button. You could also have started from the standard value 1000 m and decreased to 800 m by turning the encoder counter-clockwise.

Buttons with less than 6 possible states or values can be operated without using the encoder at all.

Operation Screens

Each of the operation screens contains a graphic picture and a selection of up to 6 soft key buttons. The various screens are selected by keeping the "Menu" button pressed and rotating the encoder in either direction. Turning the encoder clockwise cycle the screens in the sequence 1 to 10 , and counter clockwise rotation cycles the screens in the sequence 10-1. Screens no. 1-3, covering the primary functions, may also be cycled by repeatedly pressing the "Menu" button.

The screen layouts are outlined in Fig. 2.2 through 2.11. The various Soft Key button functions are described with each screen.

All Screens have 10 vertical subdivisions.

Fig. 2.2 Screen 1, Primary Operation screen.

This screen shows the main graphic echo-gram. Left hand digital indication may be enabled from screen 2.

Soft Key 1.	GAIN	$0-100 \%$	Gain Adjustment.(100\% is max. Gain)
Soft Key 2	TVG	$0-100 \%$	Time Variable Gain Adjustment.(0\% is max supression) Suppression of echoes from 0-40meter
Soft Key 3	MARK	line	Print mark line/Dump screen.
Soft Key 4	PRINT		Start and stop of continuous printing. (If printer is switched off or not connected this button is "Dimmed")
Soft Key 5	ALARM	$0-100 \mathrm{~m}$	Shallow Alarm adjustment.
Soft Key 6	ALARM	$0-1600 \mathrm{~m}$	Deep Alarm adjustment.

The currently selected Transducer (Frequency) is indicated at the bottom of all screens along with optional Transducer position, e.g. 200kHz/FWD.
(DRT0.00m and $200 \mathrm{kHz} / \mathrm{FWD}$ are switching 1 sec . interval.)

Selection of the Transducer Position Reference is performed in Screen 10.

Fig. 2.3 Screen 2, 2nd Operation screen.

This screen shows the main graphic echo-gram. Left hand digital indication may be enabled from screen 2 .

Soft Key 1.
Soft Key 2
Soft Key 3
Soft Key 4 Soft Key 5 Soft Key 6

DIGITAL FREQUENCY
MARK
PRINT
not used.
SYSTEM

MARK not used. SYSTEM
off/small/large Control of digital depth indication.
38/50/200
line
on/off
off
Transducer selection.
(Have to be "Installed " in screen 10 soft key 2 and 3)
Print mark line/Dump screen.
Start and stop of continuous printing.
Switch off System. Switch on with any button
(NOTE: Its still power on the GDS 101)

Fig. 2.4
Screen 3, 3rd Operation screen.

This screen shows the main graphic echo-gram. Left hand digital indication may be enabled from screen 2.

Soft Key 1. Soft Key 2	POWER	$0-100 \%$	Transmitter power adjustment. DRAUGHT
Soft Key 3 option	SOUND	Draught correction, must be set	

Note. Soft Keys 3 through 5 control optional functions.

Fig. 2.5
Screen 4, Calendar and clock setting.

This screen shows the main graphic echo-gram. Left hand digital indication may be enabled from screen 2 .

Soft Key 1.
Soft Key 2
Soft Key 3
Soft Key 4
Soft Key 5
Soft Key 6

PRINTER
not used
YEAR.MONTH
DAY
HOURS
MINUTES $0-59$

manual/auto
auto

01.03 ->
$1-31$
$0-23$
$0-59$

External Printer start options.
Printer start, if depth alarm are activated.
Calendar setting.
Calendar setting.
Real time clock setting.
Real time clock setting.

Note : If GPS is connected soft key 3 to 6 are controlled by GPS

Fig. 2.6 Screen 5, Language and units of measure Setup.

This screen shows the main graphic echo-gram. Left hand digital indication may be enabled from screen 2.

Soft Key 1.
Soft Key 2 Soft Key 3 Soft Key 4 Soft Key 5 Soft Key 6

SET LOW
LANGUAGE DEPTH
PICT.SPEED
VESSEL SPEED
SOUND SPEED
$24 / 28 / 30 / 33 / 38 \mathrm{KHz}$
English etc.
m etc.
$\mathrm{m}: \mathrm{s} /$ div etc.
knots etc.
m / s etc.

Adjust indicated frequency of lower frequency channel. (see chapter 5. Low frequency indication)
Screen language selection.
Unit of measurement for depth.
Unit of measurement for picture speed.
Unit of measurement for vessel speed.
Unit of measurement for sound speed.

Fig. 2.7 Screen 6, Interface Setup screen.

This screen shows the main graphic echo-gram. Left hand digital indication may be enabled from screen 2.

Soft Key 1. Soft Key 2	PULSE ENABLE	$100 / 200 / 400 / 20000$ pos/neg	Log pulse input calibration. select polarity of external sync signal (remote sounding control option)
Soft Key 3	NMEA OUT	async(1s) $/$ synchronous	Select between synchronous (with sampling rate) and asynchronous (1s period) NMEA output update.
Soft Key 4	not used	$0-98 \mathrm{~m}$	Analogue output shallow limit $=0 \mathrm{~V}$.
Soft Key 5	UPPER	$0-99 \mathrm{~m}$	Analogue output deep limit $=10 \mathrm{~V}$.

Fig. 2.8

Screen 7, History Memory Control Screen.

This screen shows the main graphic echo-gram. Left hand digital indication may be enabled from screen 2 .

Soft Key 1.	HISTORY	on/off	Start/stop(keep) History Recording.
Soft Key 2	HISTORY	Record/Playback	Record/Playback of History.
Soft Key 3	HIST.HOUR	$-24-0$ hour	History Playback Spooling, hours.
Soft Key 4	HIST.MIN	$-59-0$ min	History Playback Spooling, minutes.
Soft Key 5	MARK	line	Print mark line/Dump screen.
Soft Key 6	PRINT	on/off	Start and stop of continuous printing.

Fig. $2.9 \quad$ Screen 8, NMEA Control Screen.

This screen shows list of received NMEA messages and half screen echo-gram.

Soft Key 1.	PRINT	screen	Print Screen.
Soft Key 2	BAUD	$4800 / 9600$	NMEA Baud Rate Selection
Soft Key 3	IN/OUT	NMEA0183/RS232	I/O Port Selection
Soft Key 4	MESSAGE	DPT/DBS/DBT/DBK/XDR	
EN250/PSKPDPT	Select if message should be on/off by soft key5.		
Soft Key 5	CHECK SUM	Select if PSKPDPT should contain check sum or not by soft key5.	
Soft Key 6	DTATUS	on/off	Select if enabled Message by soft key 4 should have on or off status.
	DISPLAY	off/input/output	Message display Operation.

Fig. 2.10
Screen 9, System Status Screen.
This screen shows a comprehensive list of system settings and parameters.

Soft Key 1.
PRINT
Soft Key 2

Soft Key 3
FIX RANGE

ALARM
VESSEL
SIMULATE
screen Print screen.
HP DeskJet / Epson (Lq300+) / Epson D88 / Built-in thermal printer. Select type off printer that are connected.
on/off
on/off
merchant1/2, Navy1/2 on/off

Limit Search Range to Window on FIX RANGE gives better detection in case of noisy signal.
Internal Alarm Buzzer Control.
Upper right Screen Icon Selection.
Built-in Simulator Control.

Fig. 2.11

Screen 10, Oscilloscope Screen.

This screen shows oscillator program of receiver output versus time and half screen echo-gram.

Soft Key 1.
Soft Key 2
Soft Key 3

PRINT
TRANSDUCER
LOCATION

Soft Key 4.
Soft Key 5
Soft Key 6

GAIN
TVG
POWER

Fwd, Aft, Port, Strb
Fwd/Aft, Port/Strb
screen
200, 50, 38
Pos?, not installed,

$$
\begin{aligned}
& 0-100 \% \\
& 0-100 \% \\
& 0-100 \%
\end{aligned}
$$

Print screen.
Transducer selection for Soft key 3
(Pos? is default setting) If "NOT installed" is selected for one of the Frequenses it will not be available in screen 2 ,soft key 2 .

To select position of transducer
2 Transducers with Transducer selector (ENS518)
See page 52 Remote Transducer selector See page 53 for Nmea sentence

Gain Adjustment.
Time Variable Gain Adjustment.
Transmitter power adjustment.

Bottom detection

GDS101 employ a bottom detection algorithm that will try to extract the bottom signal from all kinds of noise and secondary echoes. When GDS101 is tracking the bottom normally, a thick black line is shown, and below that, a ribbon with a hatched pattern. This pattern has two levels of hatching. The darkest represent strong and unambiguous bottom echoes. The lighter hatching represents weaker signals possibly occasional detection misses. If the software can detect no bottom for several pings, the hatched ribbon disappears.
During normal bottom tracking, a digital value is shown by the bottom contour at the right side of the screen. If the software algorithm losses track of the bottom altogether, a warning beep is heard and the black line and hatching band disappears. A warning message: "Lost bottom" is shown in the screen's lower right corner.

Ping to Ping filtering

Part of the bottom detection algorithm is the ping to ping filtering. The next bottom is searched for in a time and strength window based on the strength and timing of the previous bottom echoes. This procedure reduces the probability of tracking schools of fish or secondary echoes as bottom.
If no bottom is detected in the calculated window, the window is gradually increased in size until the full time and strength window is used.

Bottom Search Range

The FIX RANGE function in Screen 9 is used to control the search range for the bottom detection algorithm. When this function is on, bottom is only searched for within the selected display range. When the function is off, bottom is searched for within the entire functional range of the echo sounder.

Power ON/OFF

During normal daily operation, the system may be switched off from Screen 2. This operation does not disconnect the system from the power supply, but all power consuming components are switched off. The system may be switched on again by pressing any button.
Do not run the sounder for a long time without a submerged transducer connected.

Alarm acknowledgement.

When the depth alarm is activated, the alarm may be acknowledged by pressing any button.

Fixed Key Functions.

Depth Range

The Depth Range button can be used to set the depth limit between 10 and 1600 m . Standard values available by repeatedly pressing the button are $10,50,100,500$ and 1000 m .

Picture Speed

Picture speed may be referred to either time or Vessel speed. If no speed log is connected, Picture Speed will always be referred to time. ("mm:ss/div").
Time referenced Picture Speed may be selected between 20 Seconds per division and 5 minutes per division.
Vessel Speed referenced Picture Speed may be selected between 0.04 nm per division and 5 nm per division.
If a speed \log is connected, it is possible to select a "speed/div" unit in Screen 5.
The ping-rate range depends on the Depth Range, and the fastest ping rate at shallow depths is about 5 pings per second.

Menu

The menu button facilitates selection of one of the 10 screen and soft key layouts. The 3 primary operation screens may be cycled by repeatedly pressing the MENU button. Access to the remaining screens is through encoder operation. The screens are cycled in an endless, bi-directional loop, e.g. turning the encoder counter-clockwise, will activate Screen 10 after Screen 1.

Turning the encoder with no buttons pressed always force Screen 1.

Day / Night \& Back light adjustment

Back light may be continuously controlled by means of the appropriate buttons and the encoder. Press either button and rotate the encoder until a satisfactory setting is obtained, then release the button. Day / Night vision see chapter 1. INTRODUCTION System Summary for Color bar explanation. Day / Night vision may be changes by means of pressing the Day / Night Button. (see fig. 1.1)

The settings are maintained in the non-volatile memory, and the last settings are restored on power up.
It is also possible to cycle through 3 standard backlight / picture settings by repeatedly pressing the brightness button. The 3 settings are:

1.	Minimum	backlight, Day/Night vision
2.	Half	backlight, Day/Night vision
3.	Maximum	backlight, Day/Night vision

Soft Key Functions.

Gain

Gain may be adjusted from 0 to 100% to allow for optimal echo levels from bottom and other objects. The GAIN setting affects signals from all depths.

TVG

Time Variable Gain may be adjusted from 0 to 100% to allow for detailed echo control from the $0-50$ m depth range.
A low setting will reduce the gain in the area near the surface to suppress noise and unwanted echoes from this area.

Digital indication

On the operation screens, two sizes of large digital depth indicators may be selected from Screen2.
"Small" digits occupy approximately 40% of the net echo-gram screen width.
"Large" digits occupy approximately 55% of the net echo-gram screen width.

Frequency

The Frequency selector toggles among 38, 50 and 200 kHz .

Output Power

Power may be adjusted from 10 to 100% in case of difficult shallow water conditions. Too high power in such cases will possibly saturate the receiver or cause detection of unwanted secondary bottom or surface echoes.
When a range of 10 m is selected, Output Power is automatically limited to 10%.

Draught

Draught may be compensated to allow real depth from surface to be shown on the screen and printout. Negative draught values may be entered to compensate for transducers fitted above the keel. This setting also affects the NMEA transmitted values.
Draught compensation is indicated on the screen by a flashing number to alert the operator to the fact that the shown depth value is adjusted.

External Printer Operation

The optional external printer is started and stopped by the Print buttons. The printer may be used for continuous printing over a period of time or the current screen contents may be dumped to the printer for reference if something interesting is observed.
The Print buttons switch continuous printing on and off.
The Mark buttons will write a line mark on the paper if it is pressed whenever the printer is running. If the Mark button is pressed when the printer is off, this will initiate a screen dump of the present screen contents.
If printer is switched of, or Not connected print button is "Dimmed".

Alarm settings

Depth alarm settings are performed from Screen 1. Alarm limits are referred to the indicated depth. The local alarm buzzer may be disabled from screen 9 , but the external alarm relay will always operate. The only way to disable the alarms completely, is to reduce the shallow alarm to zero depth and increase the deep alarm to maximum range.
An active shallow alarm limit must be less than an active deep alarm limit. Alarm limits are enforced with hysteresis.

A depth alarm may automatically start the optional printer if this function is enabled on Screen 4.

Clock and Calendar Settings

Manual Clock and Calendar adjustments are carried out in Screen 4. If a Satellite navigator giving UTC messages is connected to the NMEA input, the clock and calendar will be automatically updated and manual adjustment is not required.

History Memory

GDS101 has a 24 hour history memory. Depth, time and all available navigation data are stored continuously so that the last 24 hours of information is always available.
The history memory is controlled from Screen 7.
The normal history modes are "on" and "recording". New depth information is continuously stored in the memory while the oldest samples are discarded. Only bottom information is stored along with time and whatever navigational information is available in the GDS101 (Position, Speed, Heading).

By switching history "off", the stored 24 hours will be kept in the memory and no new samples will be written. As a warning that the memory is not recording, "History off" is flashing at the bottom of the screen.

History modes "on" and "playback" will start playing the contents of the history memory on the screen and on the optional printer if it is running. As a warning that the displayed bottom contour is from the memory and not real time, "History" is flashing at the bottom of the screen.

The "history hours" and "history minutes" buttons used with the encoder, will enable positioning within the 24 hour memory to observe the desired part of the time frame during playback.

Simulator

The GDS101 contains a built in simulator to exercise the screen and various interface signals. The simulator may be switched on and off on Screen 9.
When the simulator is operating, "Demo" is flashing at the bottom of the screen.

Status Screen

The Status screen, Screen 9 shows a list of various system parameters useful for documenting system set-up and system operating status. The contents of this screen will be valuable information in situations where manufacturer support is required.

Oscilloscope Screen

The Oscilloscope screen, Screen10 is useful when monitoring transceiver performance. The oscillogram shows the signal returned from the transceiver plotted against time and will enable service personnel to evaluate system performance and facilitate any troubleshooting.

Non-volatile Parameter Memory.

The system contains non-volatile memory to maintain installation and user parameters like Language and unit of measurement selection, Contrast and Backlight settings, etc.
These parameters are kept in EEPROM memory and are automatically restored on power up. If the user parameters have never been set, default values are used.

Options.

Repeaters/Slaves

Graphic display or digital depth slave repeaters may be connected to the system. Along with the graphic display repeaters there may also be installed remote keyboards.

Remote Sounding Control.
This option lets the GDS101 being controlled remotely in synchronised, burst or single ping modes. If installed, this option is accessible on Screen 3.

Auto Range

This option will automatically adjust the depth range to maintain the bottom contour within the middle half of the screen height. If installed, this option is accessible on Screen 3.
When the optional printer is started, Auto Range is automatically disabled, and the present depth range is selected as fixed.

Sound speed calibration

This option will enable adjustment of the sound speed value used for the depth calculations. The standard value is $1500 \mathrm{~m} / \mathrm{s}$, but the user may set values from 1400 to $1550 \mathrm{~m} / \mathrm{s}$ to accommodate accurate propagation speed in known water conditions. If installed, this option is accessible on Screen 3.

External Printer

Printer for endless paper or inkjet printer for single sheets (ask for actual type) may be connected for hardcopy requirements.

3. USER MAINTENANCE

Transducer Maintenance.

The transducers are virtually maintenance free, but occasional cleaning may be necessary depending on sea water conditions.

Operator Unit Maintenance.

The operator unit contains no user serviceable parts, and requires no maintenance apart from occasional cleaning of the front panel. Please use a soft cloth and no chemicals except cleaning alcohol.

Symptom	Cause	Remedy
Basic System Integrity		
No Picture on LCD Screen	No AC or DC power to the system System is in Standby To low Screen backlight Defective LCD module or Interface Voltage(s) out of Range	Check Switches and Fuses on the Terminal Board inside the GDS101 Cabinet. Press any Button on Panel Increase backlight Setting, Change to Day Vision Replace Module or Interface PCB Replace Terminal PCB
Picture is difficult to read	Backlight is too weak Night vision is on during day time.	Increase Backlight Setting Increase Backlight Setting, Ore change to day vision
Display Backlight malfunctions, Display picture is visible	Defective Backlight tubes Defective Backlight power inverter	Replace Tube Assembly Replace Keyboard PCB
Rotary Encoder malfunctions	Defective Encoder or interface	Replace Keyboard PCB or Interface PCB
Panel Buttons malfunction	Defective Buttons or interface One button stuck	Replace Keyboard PCB or Interface PCB Check Key Switches or Replace Keyboard PCB

The status Screen (9) contain information that will faciliate analysis and correction of several problems. A printout of the Status and Oscilloscope Screens should be sent by fax with any report about functional Disturbance. This will greatly facilitate remote failure Analysis.

If it is at all possible to cycle through the screens and observe this information, several assumptions may be made regarding operation of the GDS101 System. Although some of the subsystems necessary for this basic system operation may still suffer from minor or intermittent operation disorders, the fact that it is possible to select and observe this screen, indicate correct operation of the following GDS101 Subsystems:

1. The Computer is operating.
2. The Screen Interface (VGA) Board is working.
3. The Keyboard interface Board with Backlight and LCD power supplies is working.
4. The Keyboard Interface Part of the I/O Board is working.
5. The Power Supplies on the terminal board are basically working.

Symptom	Cause	Remedy
Status Screen Diagnosis		
Main Voltages out of Range $\begin{array}{ll} +5 \mathrm{~V}: & 4.7 \mathrm{~V}-5.3 \mathrm{~V} \\ +12 \mathrm{~V}: & 11.3 \mathrm{~V}-12.7 \mathrm{~V} \\ +24 \mathrm{~V}: & 22.5 \mathrm{~V}-25.5 \mathrm{~V} \end{array}$	Defective Power Supply Power Supply Overload	Replace Terminal Board. $\begin{array}{ll} +5 \mathrm{~V}: & \text { Computer or I/O } \\ \text { Board Problem. } \\ +12 \mathrm{~V}: & \text { Transceiver } \\ \text { Problem. } & \\ +24 \mathrm{~V}: & \text { Screen Backlight } \\ \text { Problem } & \end{array}$
Transceiver (XCVR) Voltage low	Power Setting to low Defective Power Supply	Increase Power Setting Replace Terminal Board or I/O Board.

The other information on the Status screen is a collection of information which may be observed and manipulated with the various screen softkey selections. As a reference, it will often be more convenient to observe the various settings together on this screen than to cycle from screen to screen to check on the softkey texts.

This Oscilloscope Screen (10) shows a typical oscillogram of a bottom echo (the tall peak in the centre of the diagram) and a weaker fish echo to the left of it. The horizontal axis represent time for the sound to travel down and back from an object. The vessel is located at the left edge of the grid, and the right edge represent the deep range. The vertical axis represent the magnitude of the echo signal received.

Symptom	Cause	Remedy
Basic Functionality		
No Bottom Detection or Bottom Contour	Too low Gain Setting Too low TVG Setting Too low Power Setting Wrong Frequency Selection	Adjust Settings Select correct frequency
Bottom tracking is intermittent or erroneous	Marginal Gain, TVG or Power Settings Weather Conditions Transducer installation faulty	Adjust settings Try adjusting Gain, TVG or Power Settings. Check transducer wiring, Receiver LED on interface Board or Oscilloscope Screen.
Bottom tracking is masked by high noise levels	Too high Gain Setting Too high TVG setting To high Power Setting	Adjust settings

Symptom	Cause	Remedy
NMEA Interface etc.		
NMEA input signals are not listed in the NMEA Screen (8).	Wrong Polarity input Signals	Swap NMEA0183 Input wires
NMEA input signals are listed in the NMEA Screen (8), but not accepted by the GDS101	GDS101 Initialisation Irregular Message Mnemonic	Cycle GDS101 power after NMEA Connection is established. Check Remote (Talker) Setup.
NMEA output signals are not accepted by the remote system	Remote (Listener) Setup	Verify correct Remote (Listener) Setup.
Analogue output malfunctions.	Incorrect Range Setting.	Verify upper \& lower Limits in Screen 6.
Pulse output malfunctions	Incorrect Pulse Frequency Setting.	Verify Pulse Setting in Screen 6.
External Control Inputs malfunction, Inhibit/External Printer Control	Incorrect Polarity or Function Settings	Verify Settings in Screen 6.

4. INSTALLATION

Standard System Supply.

A Basic GDS101 system consists of the following units. See Fig. 4.1:

Pos.	Description
1	Operator Unit with installation material
2	Transducer Junction Box(es)
3	Approved transducer steel tank(s)
4	Transducer(s) with attached cable(s) and installation material
5	Operation and Installation Manual

Transducer Installation.

Location.

Single transducers are normally installed in the foreship. Larger vessels are often fitted with two transducers, one fore and one aft.

Optimal system operation is achieved by fitting the transducer as deep as possible on the hull. The transmitting surface of the transducer must be installed horizontal. On vessels with a deep keel, if the transducer must be fitted higher than the keel, it should be fitted towards the side, as far from the keel as possible to avoid false keel echo.

Do not mount transducers close to the propeller or aft of other hull installations (outlets, vents or other protruding details).
It is of course necessary to select a part of the hull that is submerged under all load and speed conditions, and to avoid positions where air is trapped in heavy weather.

If a flat, horizontal section is not available for transducer fitting, the shipyard must construct a suitable bed.

Protect the active element of the transducer and do not paint the surface.
Transmission in the air must be avoided! This may cause mechanical damage of the element.

Installation Details.

Refer to SKIPPERs standard installation procedures in the appendix regarding tank installation, welding, Cable glands etc.

Fig. 4.1 Basic System Configuration.

Transducer Junction Box.

The standard cable fitted on the transducer is 25 m and may be shortened or extended. The junction box is used to interconnect the transducers fixed cable to a yard supply extension cable if the total required cable length is longer than the standard cable. It is recommended to run the standard cable in a steel protecting pipe.
Special requirements apply in areas with Ex conditions. The junction box must always be mounted outside such areas.

Interconnect the transducer pair and its screen in the junction box, but do not ground the screen here.

Protection code : IP65

Fig. 4.2 Transducer Junction Box, Dimensions in mm. Weight : 0,6kg

Operator Unit Installation.

Select a position to provide free view of the panel as well as easy access during operation and service.
The operator unit may be mounted flush in a panel or directly onto a bulkhead. Fig. 4.3 shows the operator unit along with the main installation dimensions.
If the unit is to be flush mounted, the shown cut-out and recession depth dimensions must be observed.
Remember to leave room in front of the unit to open the door a full 90 degree.

Do not perform installation work with system power applied!!

Cables are led through the appropriate cable glands as follows:
The cable from the transducer(s) should normally occupy the left gland. The right gland is used for power supply connection whereas the centre ones are used for any interface signals connected.
Power supply may be either $230 \mathrm{~V} / 115 \mathrm{~V}$ AC or 24 V DC. Power consumption is appx. 50 W at 24 V , appx. 70 W at $115 / 230 \mathrm{~V}$.
The transducer is always connected with 1 pair plus screen. See Fig 4.7.

If the AC power system is 115 V , GDS 101 may be prepared for 115 V AC by re-connecting the connectors J102, J103 as shown in Fig. 4.4

This diagram also shows position of fuses for $230 / 150 \mathrm{VAC}$ and 24 V DC . These fuses are normal 5×20 mm glass fuses.

AC supply:	FS100, FS101	230 V	0.5 A	Slow blow
		115 V	1 A	Slow blow
DC supply:	FS102	24 V		3.15 A

When the installation is complete, and power is connected to the Operator Unit, the appropriate power switch by the power terminals is switched on. For daily operation, these switches may stay on and the unit is switched off by pressing the "SYSTEM off" button on Screen 2. The unit is switched on by pressing any button.

Both $230 / 115$ VAC and 24 V DC power may be connected and switched on at the same time. If one of these supplies shuts down, changeover is automatic.

Fig. 4.4 Voltage selection connectors and fuses, Terminal Board.

Fig. 4.5 History Memory Battery Jumper, I/O Board.

Back-up Battery Jumper

After installation is complete and system power is applied, it is necessary to connect the history memory battery to provide power to the History Memory during system power failure. Refer to Fig. 4.5 for the correct setting of the History Memory battery jumper "ON" position. This jumper should be set to the "OFF" position only during extended unit storage periods. The onboard battery is loaded only when no power is applied to the power terminals.

Fig. 4.6 Function LEDs, Terminal, I/O and CPU Boards.

Power Indication and function LEDs.

The following LEDs are located on the Terminal Board:

LD400	+5 V
LD401	+12 V
LD402	+24 V
LD403	+48 V

The following function LED is located on the I/O Board:
LD300 Transceiver board operation
There is one function LED on the CPU board

LED1 CPU board power
Fig. 4.6 indicates position of these LEDs.

Connect transtormer primary
to J102 for 230 V AC or
to J103 for 115 V AC
Fit protection plug on unused
connector

AC Mains Power Supply
$230 \mathrm{~V} 0.4 \mathrm{~A} 60-80 \mathrm{~W}$
$115 \mathrm{~V} 0.8 \mathrm{~A} \quad 60-80 \mathrm{~W}$

DC Power Supply
$24 \mathrm{~V} 2 \mathrm{~A} 40-50 \mathrm{~W}$

Use Marine Twisted Pair Installation
Cable for all Signal cabling

-Wured sestnd 00z do 001 reub!s 607
Log Signa

		$\varepsilon / 1{ }_{\text {zovd }}$
गIIVWヨHJS		
켓:000		
	ONOOYd	YEddIYS
	$\geqslant \varnothing \varepsilon เ$	60't002 ${ }_{\text {a카ョ }}$

(C)

emitter(E) collector(C)
pth $0-10 \mathrm{~V}$ 4-20mA

Fig. 4.8 Input/Output Circuitry.

Interfacing.

Alarm relay

An alarm relay is provided for interconnection to external alarm systems. This relay is normally energised, and is released by alarm conditions or power failure/power off. See Fig. 4.7.

The terminals have the following significance:

ALCOM	Common Terminal.
ALNC	Normally closed Contact (Normal $=$ "No alarm" condition)
ALNO	Normally open Contact

To comply with MED rules, it is mandatory to connect this output to an audible alarm system.

External alarm reset function

External alarm reset function.
Can be connected at Key+/Key-, possibly in parallel with external keyboard.
External reset will disengage alarm relay and reset audio alarm (if enabled).
Visual alarm (blinking digital depth indication) is not affected and must be reset locally, by pressing any key on the panel.

External alarm reset terminals are as follows:
KEYB+ \quad External alarm reset Control Input + .
KEYB- External alarm reset Control Input -.

Pulse input terminals are as follows:

$100 / 200+$	Log Pulse Input.+
$100 / 200-$	Log Pulse Input.-

Refer to Screen 6 for selection of the log pulse rate.

Remote Transducer Selector FEEDB (Feedback)

See Fig. 4.7 and drawing ENS518 in Appenndix
Transducer Selector control input terminals are as follows:
STPRINT $+\quad$ Transducer Control Input + .
STPRINT - Transducer Control Input -.
Transducer selector FORWARD position : (open - FORWARD/PORT transducer selected)
Transducer selector AFT position : (closed - AFT/STARBOARD transducer selected)

Transmitter and Bottom Pulse outputs

See Fig. 4.7 and 4.8.
Pulse output terminals are as follows:

XMIT C	Collector of Output Opto Coupler, Transmitter Pulse. Emitter of Output Opto Coupler, Transmitter Pulse..
XMIT E	Collector of Output Opto coupler, Bottom Pulse.
BOTTOM C	Emitter of Output Opto coupler, Bottom Pulse.
BOTTOM E	End

Analogue interfaces

GDS101 is equipped with analogue outputs to supply analogue repeaters or other equipment with analogue inputs. The signals are galvanically connected to the GDS101. Standard range is $0-10 \mathrm{~V}$ or 4 20mA corresponding to Shallow Max, Deep Max Settings. These settings may be accessed on Screen 5. See Fig. 4.7.

Analogue outputs from the GDS101 have the following significance:
ANA $10 \mathrm{~V} \quad$ Positive analogue voltage output

ANA REF Negative analogue reference
ANA 20MA Positive analogue current output
ANA REF Negative analogue reference

NMEA interface

The NMEA outputs provides NMEA0183 format depth information for other equipment with NMEA0183 inputs. Baud rate is 4800 or 9600,8 bit, No parity. Several messages may be selected on Screen 7 and the enabled messages are transmitted every second.

The NMEA inputs accept position, speed, heading and UTC time messages from various navigators, compasses or speed logs.

The two inputs provided may be connected to different talkers, and both data streams will be received. There are two outputs that will drive each minimum of 10 standard NMEA0183 inputs

The NMEA0183 outputs and inputs are available on the J303 9-pin connector according to the diagram in fig. 4.9.

See Section 5, Start-up and system adaptation, for a complete list of transmitted and received messages.

VGA Video Port
Use Twisted pair
LOW CAPASITY
DATA Cable or
COAX for Red/Green/Blue
15 pin HDDSUB Connector
in External Panel

NMEA 0183 Ports
Use Twisted pair
DATA Cable
9 pin DSUB Connector
in External Panel

Parallel Printer Port
Use Twisted pair
DATA Cable
25pin DSUB Connector
in External Panel

Fig. 4.9

External Interface Ports

SEE FIG. 4.9 Data Communication Interfaces.

Options.

Repeaters/Slaves

Graphic CRT(VGA) or LCD displays or digital depth slave repeaters may be connected to the system. Along with the graphic display repeaters there may also be installed remote keyboards.
The graphic repeaters require the installation of line driver units dependant on the distance between the main system and the repeater.
See Fig. 4.7 and 4.9.

Remote Keyboard

The unit may optionally be operated from a remote keyboard.
KEYB- Keyboard reference.
KEYB $+\quad$ Keyboard signal.

See fig. 4.7 and 4.8

Remote Sounding Control.

This option lets the GDS101 being controlled remotely in synchronised, burst or single ping modes. If installed, these options are accessible on Screen 3.
See Fig. 4.7 and 4.8.

Sounder remote control terminals are as follows:
INHIB $+\quad$ Control Signal Input + .
INHIB - Control Signal Input -.

Refer to Screen 6 for selection of the control signal polarity.

5. START-UP AND SYSTEM ADAPTATION

System Adaptation

Analogue Output And Log Pulse Input Range Selection.

From Screen 6 it is possible to set number of pulses per nautical mile (100 or 200 or 400) for the log pulse input.
Shallow and deep range limits for the analogue output may also be set, e.g.
50 m corresponding to 10 V or 20 mA and
0 m corresponding to 0 V or 4 mA .

Language and Units of Measure

From Screen 5 it is possible to select different languages and units of measure for the screen and printer character strings.
The available languages are: English, French, Spanish, Russian, German and Norwegian.
Units of measure may be selected for:
Depth: meters, feet, fathoms, braccias.
Picture Speed: min:sec, nm/div, km/div, miles/div.
Vessel Speed: knots, km/h, miles/h.
Sound Speed: m/s, feet/s.

Remote Transducer Selector

See Fig. 4.7 and 4.8.
Transducer Selector control input terminals are as follows:
STPRINT + Transducer Control Input + .
STPRINT - Transducer Control Input -.

STPRINT-/STPRINT+ input is processed as transducer selector input (open - FORWARD/PORT transducer selected, closed - AFT/STARBOARD)

Low frequency indication

When the 38 KHz transceiver channel has been modified to a different frequency, it is possible from screen 5 to adjust indicated value. Softkey SET LOW has five preset values ($24 / 28 / 30 / 33 / 38 \mathrm{KHz}$) and encoder must be used to set any other value in the range of $10-200 \mathrm{KHz}$, when desired. Note that the 38 KHz channel must be activated first (Screen 2, button "FREQUENCY").

Also, note that after Master Reset procedure the value is reset to factory default, and should be reentered, if the actual value is different.

NMEA Setup

Screen 8 is used for verification of received NMEA messages and control of transmitted NMEA depth messages. Two digital communication channels are provided: primary NMEA 0183 (J303, RCV1A/BXMT1A/B) and secondary RS232C/NMEA 0183, available on J303 (NMEA: RCV2A/B-XMT2A/B) and J303 (RS232C). Each channel can be programmed individually with respect to the baud rate and scope of transmitted messages. Before configuring of the required channel, it must be selected by the mean of softkey IN/OUT. Primary channel is called NMEA, while secondary - RS232. Note, that text window will represent information, which corresponds to the currently selected channel. The type of displayed messages - received from external talker (if connected) or transmitted by the sounder is selectable by the mean of softkey DISPLAY. For more easy analysis of the window contents, display can be prevented from continuous update, if "DISPLAY off" is selected. The baud rate may be set to 4800 or 9600,4800 being the more common.
Transmitted messages are enabled individually by the mean of pair of softkeys MESSAGE and STATUS. To enable/disable particular message, select it from the list by pressing MESSAGE button until required message is appeared on the same button and then select the status of this message (on/off) by pressing STATUS button. It is advisable at this stage to set display in "output" mode, to be able to observe current scope of transmitted messages.
Transmitted talker identifier is SD, Sounder Depth. The following NMEA 0183, v3.0 messages may be transmitted:

Depth \& Draught
Depth below surface
Depth below transducer
Depth below keel
[Fore/Aft] transducer
\$SDDPT,xxxx.x,xxxx.x,xxxx.x*hh $<$ CR $><$ LF $>$
\$SDDBS,xxxx.x,f,xxxx.x,M,xxx.x,F*hh<CR $><L F>$
\$SDDBT,xxxx.x,f,xxxx.x,M,xxx.x,F*hh<CR><LF>
\$SDDBK,xxxx.x,f,xxxx.x,M,xxx.x,F*hh<CR><LF>
\$SDXDR,D, $x, x, M, c-c,<\mathrm{Cr}><\mathrm{Lf}>$

In case of multiple transducers installation the following SKIPPER proprietary sentence must be selected:
\$PSKPDPT,x.x,x.x,x.x,xx,xx,c-c*hh<CR><LF>

* Text string, indicating transducer position : FWD/AFT/PORT/STB. If position is not preset by operator, empty field is provided.
** $=1$ - 38 KHz
$=2-50 \mathrm{KHz}$
$=3-200 \mathrm{KHz}$

The following messages are accepted for input to GDS101 and interpreted by the program. The talker identifier is ignored:

Time

Universal Time
Universal Time \& Local
Day, Month, Year

```
ZZU,xxxxxx
ZLZ,xxxxxx,xxxxxx,-xx
ZDA,xxxxxx,xx,xx,xxxx,-xx
```


Position

Geographical Fix, present
Loran C Fix, present
GPS Position

GXP,xxxxxx,xxxx.xx,N,xxxx.xx,W,cccc,x
GLP,xxxxxx,xxxx.xx,N,xxxx.xx,W,cccc
GGA,xxxxxx,xxxx.xxx,N,xxxxx.xxx,W,x

Heading

Heading, true, present
Heading, magnetic, present
Heading, compass
Speed

Dual Doppler Vector
Composite
Loran C specific
GPS, Transit specific
Track \& Ground speed
Heading \& Water speed

HDT,xxx.,T
HDM,xxx.,M
HCC, xxx.

VBW,uxx.xx,uxx.xx,a,uxx.xx,uxx.xx,a

RMA,a,xxxx.xx,N,xxxxx.xx,W,,,xx.x,xxx.,,*'xx
RMC,xxxxxx,a,xxxx.xx,N,xxxxx.xx,W,xx.x,xxx., xxxyxx,,*xx
VTG,xxx.,T,xxx.,M,xx.x,N,xx.x,K
VHW,xxx.,T,xxx.,M,xx.x,N,xx.x,K

The following messages may be transmitted (Selected from Screen 7 and dependant on the DRAUGHT setting). The messages are enabled individually. Transmitted talker identifier is SD, Sounder Depth:

Options

Calibration, Sound Speed.

The only calibration activity necessary is when the Sound Speed option is installed. In this case, set the required sound Speed value in Screen 3.

External Ping Control.

When this option is installed, transmitter operation may be controlled by the external INHIBIT signal. The active polarity of this signal may be set on Screen 6. The following function options are available on Screen 3:

PINGcontinuous edge level single	Transmitter operation is continuous and not affected by the external signal.		
The transmitter is activated once by an active signal edge.		\quad	The transmitter is controlled by the external signal level.
:---			
An active level keeps the transmitter running, a passive			
level stops the transmitter.	\quad	The transmitter is activated ping by ping by pressing the	
:---			
PICTURE SPEED button on the Operator panel. The exter-			
nal INHIBIT signal is disabled.			

6. SPECIFICATIONS DIMENSIONS

Transducer, 38 kHz	H*W*L	$101 * 206 * 255 \mathrm{~mm}$
	Mounting	Tank
	Cable length	40m
	Weight	appx. 20 kg
	Protection	IP 68
Transducer, 50 kHz	Diameter	90 mm
	Mounting	Tank and Gate Valve
	Cable length	25 m or 40 m
	Weight	appx. 7 kg
	Protection	IP 68
Transducer, 200 kHz	Diameter	140 mm
	Mounting	Tank
	Cable length	25 or 40 m
	Weight	appx. 8 kg
	Protection	IP 68

Transducer, 200 kHz	Diameter	90 mm
	Mounting	Gate Valve
	Cable length	25m
	Weight	appx. 7 kg
	Protection	IP 68
Transducer Junction Box	Size incl. glands	$132 * 111 \mathrm{~mm}$
	Depth	55 mm
	Weight	0.6 kg
	Protection	IP 56
Operator unit cabinet	Height, front	340 mm
	Width	320 mm
	Depth	170 mm
	Weight	appx. 10 kg
	Protection	IP 23
Functional Properties		
Display:	$10,4 " 158 \times 211 \mathrm{~mm}$ graphic Dot-Matrix super twist color LCD Screen with adjustable day/night vision and Backlight. 640×480 pixels.	
Printer:	Optional External Printer: Raytheon 104-033	
	HP600 or 900serie.(ask for type) All Information is printed. Deep and shallow Limits.	
Depth Alarms		
Calendar/Clock Interface Outputs	Year-Month-Day / Hours-Minutes-Seconds (24 hour system).	
	Trigger- and Bottom-Pulses.	
	Analogue 4-20mA and 0-10V for Depth. Detected Video.	
	NMEA 0183 for Depth.	
	Alarm Relay.	
	Output for VGA Repeater.	
	RS-232 C.	
	PC Parallel Printer Port	

Interface Inputs

Languages

Options

100/200 Pulses for Speed.
NMEA0183 for Speed, Position, Heading and Time.
Temp. Sensor Input.
Remote Transducer Selector

English, French, Spanish, Russian, German and Norwegian.

UDR or IR301 digital remote depth Indicator.
LCD Repeater.
Remote Keyboard.
Remote Sounding Control.
Auto Range
Sound speed calibration

Performance

Depth Range:
Graphic resolution:
Digital resolution:
Transducer, 38 kHz

Transducer, 50 kHz

Transducer, 200 kHz

0-1600 m
0.5% of Range
$<10 \mathrm{~m}: 0.1 \mathrm{~m}$
$10 \mathrm{~m}: 1 \mathrm{~m}$
Beam Angle $\quad 18^{\circ} * 9^{\circ}$
Max. Power 1 kW
Effective Range 1600m
Beam Angle 33° conical
Max. Power 1 kW
Effective Range 1000m

Beam Angle
Max. Power
6° conical
1 kW
500m

Environmental according to IEC60945 :

Transducer and Junction Box

Operating temperature
Storage temperature:
Protection, Transducer:
Protection, parts inside hull:
-15-55 degree C IEC60945
-20-70 degree C
6 bar
IP66
$230 \mathrm{~V}(195-253 \mathrm{VAC})$ or $115 \mathrm{~V}(96-125 \mathrm{VAC})$ 24 V DC (20-32V)
50 W at $24 \mathrm{~V}, 70 \mathrm{~W}$ at 230 V or 115 V
Change-over contact, max. 24V 300 mA Standard 25 pin D-Sub Connector. 9 pin D-Sub. 2 Inputs, 2 Outputs.
$-15-+55$ degree C according to IEC60945
To increase serviceability and life-time, we suggest the working temperature to be held at $0-+40$ degrees C .
$-20-+70$ degree C
10-90\% relative, no condensation.
IP 23

7. SERVICE

All service requests should be made to the local SKIPPER representative.
Adjustments and repairs should only be performed by qualified service engineers, and Unqualified repair attempts will void the warranty.

CPU Board Setup Procedure.

(Valid for GDS 101u with connection for external printer and PCA-6135 type CPU with Flash RAM installed.)

1. Hardware.

Jumpers on the CPU board must be set as follows: JP1: 1-2, JP 4: 1-2, JP 9: 2-3, JP14: 1-2, JP15: 2-3.
Remaining jumpers JP 2, JP 3, JP 5, JP 6, JP 7 are not applicable.
Jumpers JP 8, JP 10, JP 12, JP 13 are connectors.
Check that 1 SIMM board (4M RAM) has been properly inserted in the "SIMM 1" bank, and locked.

2: Software.
A. Connect a PC Keyboard to the CPU board.
B. Connect a VGA Screen to the CPU board.
C. Switch the GDS 101 Power "ON" while pressing 'DELETE" key.
D. Do not release ''DEL' key until several click's , beep's and signals have been heard, and picture is present on VGA screen.. Then release key.
If the CPU has been set up before, clicking sound may not be present.
E. VGA screen will show ''AMBIOS Hiflex Setup Utility."
F. Select in menu "Standard CMOS Setup", using UP/DOWN arrows.
G. Press "Enter" once.
H. Using keys "Arrow UP", "Arrow DOWN", will move pointer in menu.
I. To modify parameters use keys "Page UP", "Page DOWN".
J. In Standard CMOS Setup, set parameters as follows.

- Date: Weekday-Month-Date-Year.
- Time: Hours - minutes - seconds.
- Floppy drive A: Not installed.
- Floppy drive B: Not installed.
- Pri Master: Not installed
- Pri Slave: Not installed.
- Boot Sector Virus Protection: Disabled

To exit " Standard CMOS Setup ", press key "ESC".
K. Select in menu "Advanced CMOS Setup".
L. Press "Enter" once.
M. Use same method as " H " and " I " to modify parameters.
N. Set "Advanced CMOS Setup" parameters as follows.

- 1st Boot Device: Disabled.
- 2nd Boot Device:

Disabled.

- 3rd Boot Device:

Disabled.

- 4th Boot Device:

Disabled.

- Boot from Card BIOS:

No.

- Try other Boot Devices:
- S.M.A.R.T. for Hard Disks:

Yes.

- Boot Up Num Lock:
- Floppy Drive Swap:
- Floppy Drive Seek:
- Floppy Access Control:
- HDD Access Control:
- System Keyboard:
- Primary Display:
- Password Check:
- System BIOS Cacheable:
- C000,32K Shadow:

Disabled.
On.
Disabled.
Disabled.
Normal.
Normal.
Absent.
VGA/EGA.
Setup.
Enabled.

- C800,32K Shadow: Disabled.
- D000,32K Shadow: Disabled.
- D800,32K Shadow: Disabled.
- E000,32K Shadow: Disabled.
- E800,32K Shadow: Disabled.

To exit "Advanced CMOS Setup" use key "ESC".
O. Select in menu "Advanced Chipset Setup".
P. Press "Enter" once.
Q. Set "Advanced Chipset Setup" parameters as follows.

- AT Bus Clock:
14.318/2.
- Slow Refresh:
- Memory Hole At 15-16M: 120 us.
- RAS Precharge Time:

Enabled.

- RAS Active Time Insert Wait:
3.5T.
- CAS Precharge Time Insert Wait:

Disabled.

- Memory Write Insert Wait:

Disabled.

- Memory Miss Read Insert Wait:

Disabled.

- ISA Write Cycle End Insert Wait:

Disabled.
Enabled.

- I/O Recovery: Enabled.
- I/O Recovery Period: 0.75us.
- On-Chip I/O Recovery: Disabled.
- 16Bit ISA Insert Wait: Enabled.

To Exit "Advanced Chipset Setup", press key "ESC".
R. Select in menu "Power Management Setup".
S. Press "Enter" once.
T. Set parameters as follows:

- Power Management Mode: Disabled.

All other options will be disabled automatically.
To exit "Power Management Setup", press key "ESC".
U. Select in menu "Peripheral Setup".
V. Press "Enter" once.
W. Set parameters as follows.

- Onboard SSD:

Disabled.

- Harddisk Delay:

Disabled.

- Onboard IDE:

Disabled.

- Onboard FDC:

Disabled.

- Floppy Drive Swap:

Disabled.

- Onboard Serial Port 1:

3F8h/COM1.

- Onboard Serial Port 2: 2F8h/COM2.
- Onboard Parallell Port: 378h.
- Parallell Port Mode:
- EPP Version: Normal.
- Parallell Port IRQ:
- Parallell Port DMA Channel:

N/A.
7.

N/A.
To exit "Peripheral Setup", use key "ESC".
X. Select in menu:"'Save Settings and Exit", and "Enter". Y. Confirm "Y", and "Enter".

Wait until ''Hit Alt-S" appears on screen.
Press key ''Alt" and hold it down, then you press key ' S ".
A small blue menu should now appear on the screen.

Set the parameters:
SSD IC TYPE:
MEMORY SEGMENT WINDOW:
SSD DRIVER EMULATED:
FLASH 512k.

WRITE TO SSD EPROM AND EXIT:
2 ND.

VGA Screen will now show normal echogram in colours.
GDS 101u LCD Screen will show normal echogram.
Disconnect external keyboard and VGA Monitor.

After completed Set-up Procedure you should always do a ''MASTER RESET":
Switch off the GDS 101u, using the internal toggle switch and wait for 20 seconds.
Then press down and keep pressed the softkey to the far right and far left (No. 1 and 6.) in the upper row on the GDS101u keyboard.

Turn the GDS101u ''on" and keep the two softkeys pressed down until the screen shows the normal picture. This may take as long as approx. 30 seconds.
You should normally hear 4 'beeps" at the end of the procedure.
Check screen 9. IC 1,2 and 3 should now indicate OK.
Check screen 7. HISTORY should now start counting from Zero.
8. APPENDIX Miscellaneous Installation Drawings

